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Abstract—Chemoselective reductions of alkenes, a,b-unsaturated carbonyl compounds, nitro and nitroso compounds, N,N-
hydrogenolysis of azo and hydrazo functions as well as simultaneous reduction and hydrodehalogenation of substituted aryl halides,
including bulkier substrates, were achieved by catalytic transfer hydrogenation (CTH) using mesoporous PdMCM-41 catalyst. The
yields were practically unaffected upon recycling of the catalyst. Further, the CTH process is accomplished without affecting the
reduction of any other reducible functional group.
� 2004 Elsevier Ltd. All rights reserved.
The selective reduction of alkenes, a,b-unsaturated
carbonyl compounds, nitro and nitroso compounds as
well as simultaneous reduction and hydrodehalogen-
ation of substituted aryl halides is an important step in
the industrial synthesis of dyes and biologically active
compounds.1 Hence, attempts have been devoted to
developing suitable synthetic methods for such trans-
formations.2 Among the various available processes,
catalytic transfer hydrogenation (CTH)3 is emerging as
a viable alternative to the commonly used reduction
processes, which involve hazardous molecular hydrogen
or a metal hydride donor. Such reactions have also been
performed over homogeneous catalysts.4 However, in
view of the drawbacks of the homogeneous catalyzed
processes as well as environmental concerns associated
with these methods, in recent years the scientific com-
munity has switched over to heterogeneous catalysts for
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such transformations,5 which offer several advantages
over homogeneous counterparts with respect to han-
dling, easy recovery and recycling of catalysts as well as
minimization of undesired toxic wastes. Furthermore,
the process is simple, reaction conditions are mild, and
reduction of bulky molecules can be carried out without
the use of expensive reagents. In this regard, palladium
supported6 or functionalized7 catalysts are, in general,
considered good catalysts.

We recently reported several transition metal-based
mesoporous silicate and aluminophosphate molecular
sieves, which show promise for a variety of industrially
important organic reactions and the use of which may
represent a possible alternative to standard syntheses of
a wide variety of precursors and intermediates.8 Fur-
thermore, they were also found to be very efficient,
highly selective, and rapidly synthesized. More impor-
tantly, these materials catalyzed some of the following
reactions, for example, oxidation of alkyl aromatics,8a

phenols,8b cyclohexane,8c–e and cyclohexene,8f reduction
of aromatic nitro and carbonyl functions,8g–i more effi-
ciently than the corresponding microporous analogues
or supported metal oxide systems. In continuation of
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our work on the development of novel eco-friendly
molecular sieves-based heterogeneous catalysts and
catalytic processes, as well as realizing the importance of
the development of novel synthetic methods for certain
important transformations, including bulkier molecules,
we report herein the first of a series of studies that ex-
plore a CTH approach for the reduction of aromatic
a,b-unsaturated ketones, nitroso compounds, and hyd-
rodehalogenation of substituted aryl halides using a
newly developed palladium-based mesoporous silicate
molecular sieve catalyst, designated as PdMCM-41.9

Mesoporous materials are novel molecular sieves, hav-
ing a high surface area, and large pore size and vol-
ume.10 The PdMCM-41 catalyst was hydrothermally
synthesized11 and characterized using various analytical
and spectroscopic techniques. Since, the CTH process
requires acidic sites, this catalyst is very well suited for
this purpose, as it possesses such characteristics,12 and
therefore, in this investigation mesoporous PdMCM-41
catalyst was employed for the titled reactions.13 Fur-
thermore, the mesoporous matrix gives a better disper-
Table 1. CTH of unsaturated carbonyl compounds over PdMCM-41

Entry Substrate Time (h)

1

C

CH=CH

CH3O

3.5

2

O

2.0

3 CHO 4.0

4

CH2OH

CH=CH
2.0

5

CH=CHCHO

2.5

6

CH=CH2

3.0

7

CH=CH2

CO2H

5.0

8 1.5

9
O

CH3 CH=CH CH
1.5

a Isolated yield based on single experiment.
sion of the active palladium ions as compared to other
supported systems in addition to the benefits from
having a low palladium content.

Table 1 summarizes the results of CTH of several alk-
enes and a,b-unsaturated carbonyl compounds over
PdMCM-41 catalyst, wherein the substrates were
reduced in excellent yields. The catalyst reduces only the
olefinic bonds, the carbonyl groups remaining unaf-
fected. The selective reduction can be explained on the
basis of the actual active species involved in the reduc-
tion process, which strongly depends on the reaction
conditions. Thus, when PdMCM-41 is used in combi-
nation with ammonium formate and methanol, selective
reduction of the olefinic bonds produces saturated car-
bonyl compounds. Interestingly, when PdMCM-41 was
used in combination with potassium hydroxide and
isopropanol, the unsaturated carbonyl compounds were
transformed into saturated alcohols (Scheme 1) since the
catalyst in combination with potassium hydroxide and
isopropanol produces metal alkoxide,8i which has an
Product Yield (%)
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Scheme 1.

Table 3. CTH of nitroarenes over PdMCM-41

NO2 NH2

PdMCM-41

HCOONH4

MeOHR R

Entry R Time (min) Yield (%)

1 H 30 99

2 2-CH3 40 92

3 3-CH3 45 90

4 4-CH3 40 93

5 3-CO2H 30 85

6 4-CO2H 40 88

7 4-COCH3 40 80

8 3-CHO 30 82

9 4-OCH3 45 88

10 2-OH 60 86

11 4-OH 50 85

12 3-CH3CHOH 45 85

13 2-NH2 35 87

14 3-NH2 45 85

15 4-NH2 40 89

16 4-CH2CN 60 83

NO2 NH2

[35 min, 88%]

PdMCM-41

HCOONH4

MeOH

Scheme 2.
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affinity for carbonyl groups and therefore produces
saturated alcohols.

Table 2 lists the results of transfer hydrogenation of
some aromatic and heterocyclic nitroso compounds over
the PdMCM-41 catalyst. It can be seen from the table
that the catalyst successfully reduces aromatic nitroso
compounds to aromatic amines with good yields (entries
1 and 2), while denitrosofication takes place due to –N–N–
bond cleavage, in the case of aliphatic and aromatic
nitrosoamines (entries 3–5). The catalyst was also used
for the chemoselective reduction of nitroarenes and it
was found to be more efficient (Table 3) than other
mesoporous-based catalysts.7;12 It is also noteworthy
here that the PdMCM-41 catalyst can successfully
reduce a relatively hindered aromatic nitro compound,
2-nitronaphthalene (Scheme 2), with good yields in a
much shorter time than that reported in literature.7;14

However, one of the most important characteristics of
the PdMCM-41 catalyst is the simultaneous cleavage of
both –N@N– and –C–X (X¼ a halogen) bonds. Thus,
the reduction of nitroso, nitro, azo, and hydrazo com-
pounds yields aniline (Scheme 3).

Table 4 summarizes the results of hydrodehalogenation
of aryl halides over PdMCM-41. The hydrodehalogen-
ations of –Cl and –Br functions were achieved in good
Table 2. CTH of nitroso compounds over PdMCM-41

Entry Substrate Time (min) P

1

NO

30

2

NO
OH

50

3

O

N

NO

120

4

N

N

NO

CH3

150

5 N

NO

180
yields. Functional groups such as –CHO were tolerated.
However, it is important to note that both reduction (of
carbonyl groups) and hydrodehalogenations (of halides)
takes place concurrently when isopropanol and KOH
were used for the reaction (Scheme 4). Indeed, with time,
roduct Yield (%)
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Scheme 5.
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both the reduction and hydrodehalogenation can easily
be followed throughout the reaction with nitro aryl
halides (Scheme 5). Furthermore, the PdMCM-41 cat-
alyst is more effective than several other catalytic sys-
tems, which require much longer reaction times,
typically 1–2 days, to achieve similar yields.5d;e

In summary, PdMCM-41 was found to be a promising
heterogeneous catalyst under mild transfer hydrogena-
tion conditions15 for the selective reduction of alkenes,
a,b-unsaturated carbonyl compounds, aromatic nitro
and nitroso compounds, N,N-hydrogenolysis of azo and
hydrazo functions as well as simultaneous reduction and
hydrodehalogenation of substituted aryl halides,
including hindered substrates. The conversion was much
faster and cleaner than conventional methods and
moreover, in the present case, the reaction occurs under
mild reaction conditions. Thus, the CTH method
employing PdMCM-41 catalyst is a highly selective
route for environmentally benign organic reductions.
Table 4. Hydrodehalogenations over PdMCM-41

Entry Substrate Time (h) Pr

1
C

O

Br

4.0

2
C

O

Cl

5.0

3

CH3
Cl

3.0

4

Cl

CHO

NH2

4.0

5

COCH3

Cl

3.5
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